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Flow of a non-homogeneous fluid in a porous medium 
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If the viscosity and specific weight of a fluid are variable, the equations governing 
its flow in a porous medium are non-linear and in general very difficult to solve. 
It has been found, however, that steady flows of a fluid of variable viscosity but 
constant specific weight can be reduced to those of a homogeneous fluid by a 
remarkably simple transformation, which indicates that the flow patterns of the 
fluid are the same as those of a homogeneous fluid with the same boundary con- 
ditions, and that only the speed need be modified. The speed of the actual flow 
is obtained by dividing the speed of the homogeneous-fluid flow by a factor 
proportional to the actual viscosity. The transformation is also used to derive 
the equations governing steady two-dimensional flows and steady axisymmetric 
flows of a fluid of variable viscosity and specific weight. In  a good many cases of 
practical importance these equations are exactly linear, in spite of the fact that 
the governing equations obtained without the use of the above-mentioned 
transformation are non-linear. An exact solution for a steady two-dimensional 
flow with prescribed boundary conditions is given. Two inverse methods for 
generating exact solutions for two-dimensional flows are presented, together with 
two illustrative examples. The theory also applies to Hele-Shaw flows, so that 
it can be easily verified in the laboratory. 

1. Steady seepage flow of a fluid of variable viscosity 

a porous medium is expressed by the equations 
The generalized Darcy’s law for steady flows of a non-homogeneous fluid in 

i (i= 1,2,3) ,  P aP 
axi 

pi = - -+px  

in which ui is the (mean) velocity component in the direction of the Cartesian 
co-ordinate xi, p is the viscosity, k is the permeability (which may vary from 
place to place), p is the pressure, p is the density, and& is the body force per unit 
mass in the direction of increasing xi. I f  the fluid is incompressible, the equation 

= 0. au, 
axi 

of continuity is 

If ,u and p are constant, equations (1) and (2) are linear. In  particular, if (in addi- 
tion) k is constant and Xi possesses a potential R so that 

as2 x. = -- ax; (3) 

then 
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is the potential for the velocity components and satisfies the Laplace equation, 
as can be seen from the three preceding equations. If p and ,u are not constant, 
equations (1)  are highly non-linear, and at first sight hopelessly complicated. 
The following development will show that the situation is actually not as hopeless 
as it appears to be. 

For seepage flow with a macroscopic scale large compared with the dimension 
of the interstices, interstitial diffusion can be neglectedt (Saffman 1959). Mole- 
cular diffusion can be neglected (Saffman 1960) if the PBclet number based on a 
macroscopic scale is large compared with 1. Thus in most practical cases diffusion 
can be neglected altogether, and for steady flows 

and 

aP 
a axa u - = o  

ua- = 0. 
8% 

(4) 

In  the absence of body forces, the effect of viscosity variation is simply and con- 
clusively embodied in the transformation 

in which po is a reference viscosity and u; the velocity of an associated flow. To 
isolate the effect of viscosity variation, we shall assume p to be constant and the 
body force to be conservative. Equations (1) then become 

a 
?u-”u; = - - (p+pQ).  
k axi 

Furthermore, because of (a), equation (2) can be written 
au; 
axi 
- = 0. 

(7) 

Equations (7) and (8) are those governing the flow of a homogeneous fluid. Thus, 
by means of the transformation (6), the flow of a fluid of variable viscosity is 
related to that of a homogeneous fluid. In  particular, if k: is constant, 

in which the potential 
k 

= j$-)+PQ) 
satisfies the Laplace equation 

vap = 0. 

Consequently, if k and p are constant, the flow pattern is the same aa that for a 
homogeneous fluid, provided the boundary conditions areunchanged.$ Theactual 
velocity ui is obtained by means of (6) from the velocity u; of the irrotational flow 

f The author owes this assurance to Dr P. G. Saffman. 
2 In this connexion, remember that the conditions at surfaces of density discontinuities 

are satisfied in the actual flow if they are satisfied in the associated flow (with density jumps). 
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field determined by (1 1). Thus, in regionsof constant u; (say u; = U', u; = u; = 0 ) ,  
the actual speed u1 is inversely proportional to the viscosity. This conclusion 
applies to regions of horizontal flow, even if p is not constant. 

2. The equation governing steady two-dimensional flows of a non- 
homogeneous fluid 

The effect of variation in specific weight (or of density in a gravitational field) 
will now be taken into account also. If (2, z )  are used for (xl, x3), with z measured 
vertically upward, and (u, w) are used for (ul, u3), equations (1) can be written, 
for two-dimensional flows, 

or, with P 
PO 

(u', w') = - (u, w), 

bu' = -2 bw' = _ _ _  k ax, k az ap 9P. 

The permeability k will be assumed constant in the subsequent development. 
I f p  is eliminated from equations (14), and, as a consequence of (5) and the steadi- 
ness of the motion, p is recognized to be a function of the stream function alone, 
the following equation is obtained: 

in which $' is the stream function (of Lagrange) for the velocity components u' 
and w' : 

The quantity dpld$' is to be determined from the upstream condition. 

3. The equation governing steady axisymmetric flows of a non- 
homogeneous fluid 

For axisymmetric flows, the equations corresponding to (14) are, in cylindrical 
co-ordinates (with z measured vertically upward), 

in which u' and w' are again related to u and w by (13), except that now u is the 
radial and w the axial component of the velocity. The equation of continuity 

can again be written aa 
a(ru') a( rWl)  

ar aZ +- = 0, 
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because the substantial derivative of p is zero. Equation (19) permits the use of 
Stokes's stream function VY : 

Elimination ofp from (17) by cross-differentiation and utilization of the fact that 
p is a function of @' alone produce the following equation governing steady 
axisymmetric flows: 

(21) 
kggr ap av - (;;2 ; ,ar+&) PI = zdlC.'ar, 

in which d p l d v  is to be determined from the upstream condition. 

4. Exact solutions for two-dimensional flows 
As a first example, the case of stratified seepage into a two-dimensional sink 

will be discussed. The fluid is assumed to be confined to the porous layer between 
two impermeable horizontal planes, one at z = 0 and the other at z = d. The sink 
is situated in the upper plane. 

The point in the lower plane directly below the sink will be used as the origin 
for the co-ordinates (x, z) in the plane perpendicular to the direction of the length 
of the sink. Thus the co-ordinates for the trace of the sink in that plane are 
(0, d). Since there is symmetry about the z-axis, only one half of the flow field 
need be considered. The flow at x = - 03 is, as can be verified later, horizontal in 
direction. Hence (15) demands that, at z = - 03, 

9' = Cz (C = constant), 
where @' is taken to be zero at the lower boundary. If the upstream variation of 
p with z is given, C is related to the actual discharge in a straightforward manner. 
With the dimensionless variables defined by 

(15) becomes 

The quantity B is in general a function of Y, to be determined from the upstream 
condition. But ifp changes linearly with z far upstream, where the flow is parallel, 
it also changes linearly with Y and B is a constant. The constancy of B will be 
assumed in the examples given. 

Equation (23 )  is to be solved with the boundary conditions 
Y = O  at q = O  and f = O  ( q < l ) ,  
Y = 1  at q = 1 ,  

Y = q  at c=-03. 

The solution, by the method of separation of variables, is 
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The flow pattern for B = 0 is an irrotational flow pattern, familiar in hydro- 
dynamics, and will not be shown here. Those for B = n-, 27r and 477 are shown in 
figures 1-3 respectively. The flow condition at x = - co is entirely the same for 
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FIGURE 1. Two-dimensional flow of a stratified fluid in a porous medium into a sink, 
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FIGURE 2. Two-dimensional flow of a stratified fluid in a porous medium into a sink, 
B = 2n. 
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FIGURE 3. Two-dimensional flow of a stratified fluid in a porous medium into a sink, 

any value of B (or of density variation), but the patterns show a concentration 
of streamlines near 7 = 1 for greater and greater values of B. The solution (24) 
and the corresponding one for axisymmetric flow may be useful for deciding 
whether the practice in the oil industry of forcing oil up for pumping by injecting 
water into the ground is an economical one. 

B = 4n. 
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For flows, confined between two impermeable planes z = 0 and z = d, from 
left to right past an impermeable barrier protruding from the lower plane (say), 
inverse methods can be advantageously used. Two inverse methods will now be 
given, which can be combined if desired. For either method the solution is of the 
form 

in which (an,Pn) = t ( -B- t -~[B2+4nz~*]) ,  (27) 

the constancy of B being assumed. The first method consists in matching Y- 
and Y, at fc = O through the demands 

Y-=Y+ at c = O ,  (28! 

in which f ( 7 )  = 0 for a < q < 1 anda t  7 = 0, 

and is arbitrary otherwise. The functionf(g) corresponds to a vortex distribution 
from 7 = 0 to 7 = a .  Equation (28) demands that 

A ,  = B,, 
and (29) demands 

or 

a,An-PnBn = 2 

J(B2+4n2+)An = 

(30) 

(31) 

The vortex sheet does not have to be located at 6 = 0. If it  is located at $ = b, 
all one has to do is to change !$ to E -  b in equations (25) and (26). Thus more than 
one vortex sheet may be used, and the resulting barrier is then traced out as the 
closed streamline Y? = 0. By assuming f (7)  to be a ‘Dirac function’ located at 
some non-zero elevation, equations (25)-(37), (30) and (31) provide the solution 
for flow over a barrier generated by a concentrated vortex located on 6 = 0. 
By shifting the origin we can obtain the solution for a concentrated vortex located 
elsewhere, and the solutions for different vortices can again be superposed. 

TC 
I L  

O 

”’) 
-12sin2nq in 
0 elsewhere, (33) 

then 0 if nisevenbut $. 2,  %, 

The flow patterns for this choice of f(n) are shown in figures 4 and 5, for B = T 
and 2 r  respectively. From (25)  and (26) it can be seen that the flow pattern is 
always unsymmetric about 5 = 0, even if the barrier itself is symmetric. 
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The second method consists in matching Y- and Y, at = 0 by demanding 

Y--Y+ =f(q) at 5 = 0, 

tq 'p= 1.0 

\ 0.1 
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FIGURE 4. Two-dimensional flow of a stratified fluid in a porous medium over a 
barrier, B = n. 

FIGURE 5. Two-dimensional flow of a stratified fluid in a porous medium over a 
barrier, B = 277. 

in whichf(q) is defined as in (29). The functionf(7) now corresponds to a source 
distribution. Equation (35) demands 

and (36) demands an A n -  Pn Bn = 0, (37) 

Again, the source distribution may be shifted to 5 = b. In  that case the solution 
is given by equations (25)-(27), (37) and (38), with 5 changed to 6- b. Solutions 
corresponding to concentrated sources located anywhere above 7 = 0 can be 
obtained by assumingf(7) to be a 'Dirac function', and these can be superposed 
on those for source distributions to obtain a solution representing a flow over a 
barrier which is nearly the same in form as a prescribed one. In  order that a closed 
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barrier be obtained, however, the total algebraic sum of the sources must be 
zero. In  fact, from the solution corresponding to a concentrated source we can 
obtain that for a concentrated doublet, by differentiation of (25) and (26) with 
respect to 6. The solution corresponding to a doublet distribution can then be 
obtained by integration. The doublets and doublet distributions (over vertical 
lines) can be located at different places, and the corresponding solutions can be 
superposed. We do not have to worry now about the closure of the streamline 
repsesenting the barrier. 

5. Stratified flow in Hele-Shaw cells 
Since Hele-Shaw flows can be much more easily investigated in the laboratory 

and are much easier for observation than seepage flows, it is desirable to show 
that all of the developments in $02 and 4 can be carried over to Hele-Shaw 
flows. In  fact, if the fluid is confined between two rigid planes y = 0 and y = b, 
and if b is very small, the equations of motion are, for steady flows, 

in which the symbols have exactly the same meanings as in $2. Since b is small, 
we can assume, after Hele-Shaw, that 

(u,w) = 6 -  1 - -  ( U ,  W ) ,  :( i )  
where U ,  Ware independent of y. If, furthermore, p is assumed to be only a func- 
tion of x and z, and not of y, equations (39) and (40) become 

which are identical to (1 2) if +zb2 is equated to k, and U and W identified with the 
u and w in (12). Since p and p again do not change on a streamline in the x-z- 
plane, an equation identical to (15) can again be obtained, and all of the develop- 
ments in § 4 can be carried over. 
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